郑州市 2023—2024 学年下期期末考试

高中一年级物理参考答案

一.选择题(每题4分,共48分) 1. B 2. A 3. C 4. D 5. B 6. D 7. A 8. C 9. AC 10. AD 11. CD 12. BD 二.实验题(每空2分,共14分) 13. (1)自由落体运动 (2)能 (3)1.4 14. (1) (1)B (2)1.20 $(2)\frac{1}{2}m(\frac{d}{t})^2$ $(3)mgl = \frac{1}{2}(M+m)\frac{d^2}{t^2}$ 三.计算题(共4小题,共38分) 15. $(8 \, \text{$\%$})$ (1) $T = 2\pi \sqrt{\frac{R}{g}}$; (2) $v = R \sqrt{\frac{g}{R+h}}$ 【解】(1)对神州十八号,在近地轨道运行时,重力提供向心力,有 $mg = m \left(\frac{2\pi}{r}\right)^2 R \qquad \cdots \qquad 2$ $T = 2\pi \sqrt{\frac{R}{g}} \qquad \dots 1 \$ 解得 神州十八号在近地轨道运行时 $G_{R^2}^{Mm} = mg$ ·······2分 联立解得 16. $(8 \, \text{$\%$}) \, (1) \, \frac{H}{h} = \frac{9}{5}; \, (2) \, H = \frac{4}{2}h$ 【解】(1)由平抛运动规律有 $H = \frac{1}{2}gt_1^2 \qquad \cdots \qquad 1 \ \mathcal{H}$ 排球落在对方场地中间位置,水平位移为 $x + \frac{1}{2}x = v_0 t_1 \quad \dots \quad 1 \ \text{fr}$ 排球刚好过网,则 联立解得 (2)由分析可得,当高度为H时,球恰好出界且恰好触网,设此时初速度大小为v₀, $H-h=\frac{1}{2}gt_{3}^{2}$ 从抛出到恰好触网,有 $x = v_0 t_3 \qquad \cdots \qquad 1 \ \%$ $H = \frac{1}{2}gt_4^2$

从抛出到恰好出界,有

答案第1页,共2页

	$2x = v_0 t_4 \qquad \cdots $
联立以上式子,得	$H = \frac{4}{3}h \qquad \cdots \qquad 2 \ 2$
17. (10分) (1) F=12	200N, $k = 24$ N/m · s ⁻¹ ; (2) $S = 4.32 \times 10^5$ m
【解】(1)设汽车电动	J机最大功率为 P, 以最大速度 vm 行驶时的牵引力为 F, 则
	$P = Fv_{\rm m} \qquad \cdots \qquad 2 \ \mathcal{D}$
当汽车以最大速度运行时的牵引力等于阻力,则	
	$F = f = kv \cdots \cdots 1 \ \mathcal{H}$
解得	F=1200N
	k = 24N/m · s ⁻¹ ····································
(2) 设电池总能量为	$E=80kW\cdot h$,汽车发动机将电池能量转化为汽车运动的能量 E_l ,则
	$E_1 = E \times 90\% \times 80\% = 2.0736 \times 10^8 J$
电动汽车在-10℃的环	境下,在平直高速公路上以速度为 v1=72km/h=20m/s 匀速行驶,
设牵引力为 F1, 阻力>	J <i>f</i> i,续航里程为 <i>S</i> ,则
	$F_1 = f_1 = kv \cdots 1 \ \mathcal{H}$
677.42	$E_1 = f_1 S \qquad $
解得	S=4.32×10 ³ m
18. $(12 \%) (1) \mu =$	$\frac{1}{2}$, $x = 2R$; (2) $h = \frac{3}{2}R$
【解】(1) 滑块第一次	CD 时,由牛顿第二定律得 $mg = m \frac{v_{D}^{2}}{R}$
解得	$v_D = \sqrt{gR} \cdots 2 $
对滑块,从释放到D,	由动能定理得
mg(h -	$2R) - \mu mgL = \frac{1}{2}mv_D^2 - 0 \cdot \dots \cdot 2 \mathcal{D}$
解得	$\mu = \frac{1}{2} \dots 1 \; $
从 D 到 E 点由平抛运动	力规律
水平方向上	$x = v_D t$ 1 β
竖直方向上	$2R = \frac{1}{2}gt^2 \cdots \cdots 1 \ \text{if}$
解得	x = 2R ·······1 $%$
(2) 根据题意, 滑块	至少第二次经过 E 点,
对于滑块,从释放到第	5二次经过 E, 由动能定理得
mgi	$u' - \mu mg(L+2R) = 0 - 0 \cdots 3 $
解得	$h' = \frac{5}{2}R \cdots 1 \; $
经检验 $h' = \frac{5}{2}R$ 时恰好	经过圆轨道与圆心等高的点,不会脱离轨道。(此判断不写不扣分)

答案第2页,共2页