郑州市 2023—2024 学年上学期期末考试 高中二年级数学参考答案

一、单项选择题,本大题共8小题,每小题5分,共40分.

题号	1	2	3	4	5	6	7	8
答案	В	С	А	В	С	Α	В	D

二、多项选择题,本大题共8小题,每小题5分,共40分.

题号	9	10	11	12
答案	ACD	BD	AC	ABD

三、填空题,本大题共4小题,每小题5分,共20分.

13.
$$(-2,-4,3)$$
 ; **14.** 写出 $2x+y=0$ 或 $x-2y+5=0$ 或 $x-2y-5=0$ 一条即可;

15.
$$\frac{\sqrt{29}}{3}$$
; 16.6n-4.

四、解答题,共70分.解答应写出文字说明、证明过程或演算步骤.

17.解: (1)由题意可知, *H* 为 *AB* 的中点,

$$\therefore A \ (-1,3)$$
 , $B \ (2,0)$, $\therefore H \ (\frac{1}{2},\frac{3}{2})$1 分

:: *CH* 所在直线方程为
$$y - \frac{3}{2} = x - \frac{1}{2}$$
, 即 $x - y + 1 = 0$5 分

(2) 由
$$\begin{cases} 2x - y + 4 = 0, \\ x - y + 1 = 0 \end{cases}$$
 解得 $\begin{cases} x = -3, \\ y = -2 \end{cases}$ 所以 C (-3,-2).7分

又直线
$$AB$$
方程为 $y = -(x-2)$,即 $x + y - 2 = 0$ 8 分

:: 点*C*到直线*AB*的距离
$$d = \frac{|-3-2-2|}{\sqrt{2}} = \frac{7\sqrt{2}}{2}$$
.10 分

18.解:(1)设圆 C 的半径为 r,过 P 向圆 C 所作切线的一个切点为 Q,由 $|PQ| = \sqrt{|PC|^2 - r^2}$ 知,当 |PC|最小时,切线段 |PQ| 的长度有最小值,自圆心 C 向直线 2x - y + 3 = 0 引垂线段 CP,此时 |PQ| 有最小值.

.....1分

∵ 圆心
$$C$$
 到直线 $2x-y+3=0$ 的距离 $d=\frac{|2+3|}{\sqrt{2^2+1}}=\sqrt{5}$. 即 $|PC|_{\min}=\sqrt{5}$3 分

$$r = \sqrt{(\sqrt{5})^2 - 2^2} = 1.$$
5 $\frac{1}{2}$

:. 圆的方程为
$$(x-1)^2 + y^2 = 1$$
.6 分

(2) 由圆
$$C$$
: $(x-1)^2 + y^2 = 1$ 和圆 C' : $\left(x-\frac{3}{2}\right)^2 + \left(y-\frac{1}{2}\right)^2 = \frac{1}{2}$,

两圆方程相减得,公共弦 AB 所在直线方程为x+y-2=0.8 分

∴圆心 C 到直线
$$x+y-2=0$$
 的距离为 $d=\frac{|1+0-2|}{\sqrt{1^2+1^2}}=\frac{\sqrt{2}}{2}$10 分

∴ 弦长
$$AB = 2\sqrt{r^2 - d^2} = \sqrt{2}$$
.12 分

19.解:(1)设等差数列的公差为 d,则由题意得

$$\begin{cases}
5a_1 + 10d = 3(3a_1 + 3d) - 2, \\
a_1 + (2n-1)d = 2[a_1 + (n-1)d] + 1
\end{cases}$$
......2 f

解得
$$\begin{cases} a_1 = 1, \\ d = 2. \end{cases}$$
4 分

∴数列
$$\{a_n\}$$
的通项公式为 $a_n = 2n - 1$5 分

(2) 由题意得,数列 $\{b_n\}$ 为等比数列,公比为-1,

所以
$$\{b_n\}$$
的通项公式为 $b_n = (-1)^n$6 分

当 n 为偶数时, $T_n = -1 + 3 - 5 + 7 - \dots + (-1)^n (2n-1) = n$;

当 n 为奇数时,
$$T_n = -1 + 3 - 5 + 7 - \dots + (-1)^n (2n-1) = -n$$
.11 分

综上所述,
$$T_n = (-1)^n n$$
.12 分

(T, 的最终结果写成分段函数形式也可以.)

20. 解: (1) : 曲线 C上的动点 $P(x,y)(x \ge 0)$ 到点 F(2,0) 的距离比 P 到直线

x = -3的距离小 1,

∴ 动点P(x,y)到直线x=-2的距离与它到点F(2,0)的距离相等.

故所求轨迹为以原点为顶点,开口向右的抛物线,且 $\frac{p}{2}$ =1,2 分

 $\therefore p = 4$.

∴点 P 的轨迹 E 的方程为 $y^2 = 8x$.

......4 分

(2)证明:由题知直线/的斜率存在且不为零,

设l的方程为v = k(x+2),

......5 分

联立
$$\begin{cases} y^2 = 8x \\ y = k(x+2) \end{cases}$$
 得 $k^2x^2 + (4k^2 - 8)x + 4k^2 = 0$,

$$\Delta = (4k^2 - 8)^2 - 16k^4 = 64(1 - k^2) > 0,$$

设
$$A(x_1, y_1), B(x_2, y_2)$$
,则 $x_{1,2} = \frac{-4k^2 + 8 \pm 8\sqrt{1 - k^2}}{2k^2}$,

$$\therefore x_1 + x_2 = \frac{8 - 4k^2}{k^2}, \ x_1 x_2 = 4.$$

.....7分

$$\therefore k_{FA} + k_{FB} = \frac{y_1}{x_1 - 2} + \frac{y_2}{x_2 - 2} = \frac{k(x_1 + 2)}{x_1 - 2} + \frac{k(x_2 + 2)}{x_2 - 2}$$

$$=\frac{k(x_1+2)(x_2-2)+k(x_1-2)(x_2+2)}{(x_1-2)(x_2-2)}=\frac{2k(x_1x_2-4)}{(x_1-2)(x_2-2)}, \qquad10$$

$$\cdot \cdot \cdot x_1 x_2 = 4$$

$$\cdot \cdot \cdot k_{FA} + k_{FB} = 0$$

......11 分

即直线FA与直线FB的倾斜角互补.

.....12 分

21.解: (1) 取 AC 的中点 Q, 连接 PQ, C_1Q , 得 PQ 为 $\triangle ABC$ 的中位线,

∴
$$PQ//BC$$
, $\coprod PQ = \frac{1}{2}BC$.

 $\overrightarrow{\text{mi}} A_1 C_1 = 1$, $A_1 C_1 = B_1 C_1$, $BC // B_1 C_1$,

则 $PQ//B_1C_1$, $PQ=B_1C_1$,

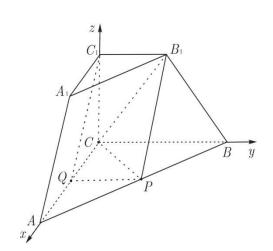
∴四边形 PQC_1B_1 为平行四边形,

$$\therefore B_1 P // C_1 Q$$
.

......3分

又 $:B_1P$ \notin 平面 ACC_1A_1

 $C_1 O \subset$ 平面 $ACC_1 A_1$,



∴*B*₁*P* // 平面 *ACC*₁*A*₁ 5 分

(2) 如图,以 CA, CB, CC_1 所在直线分别为 x 轴、 y 轴、 z 轴,建立空间 直角坐标系.则 B_1 (0, 1, 2),C (0, 0, 0),P (1, 1, 0),

所以
$$\overrightarrow{CB_1} = (0,1,2), \overrightarrow{CP} = (1,1,0)$$
.6 分

设平面 B_1CP 的一个法向量为 $\vec{n}_1 = (x, y, z)$,

易知平面 ACC_1A_1 平面的法向量为 $\vec{n}_2 = (0,1,0)$9 分

设平面 B_1CP 与平面 ACC_1A_1 的夹角为 θ ,则

$$\cos\theta = |\cos\langle \overrightarrow{n_1}, \overrightarrow{n_2} \rangle| = \frac{|\overrightarrow{n_1} \cdot \overrightarrow{n_2}|}{|\overrightarrow{n_1}||\overrightarrow{n_2}|} = \frac{2}{3}.$$

 \therefore 平面 B_1CP 与平面 ACC_1A_1 的夹角余弦值为 $\frac{2}{3}$12 分

22. (1) 解: 由题意得 $\begin{cases} e^2 = 1 - \frac{b^2}{a^2} = \frac{2}{3}, \\ \frac{2b^2}{a} = \frac{2\sqrt{6}}{3}. \end{cases}$ 2 分

解得
$$\begin{cases} a = \sqrt{6}, \\ b = \sqrt{2}. \end{cases}$$
 3 分

∴ 椭圆的标准方程为:
$$\frac{x^2}{6} + \frac{y^2}{2} = 1$$
. 4 分

(2) 假设椭圆C上是存在点P,设为 (x_0,y_0) ,使得四边形OMPN为平行四边形.

设直线
$$l$$
 的方程为: $x = ty + 2$, 5 分

联立
$$x = ty + 2$$
 与 $\frac{x^2}{6} + \frac{y^2}{2} = 1$ 消去 x 得 $(t^2 + 3)y^2 + 4ty - 2 = 0$,

判别式 $\Delta = 24(t^2 + 1) > 0$,

设
$$M(x_1, y_1) N(x_2, y_2)$$
,则 $y_{1,2} = \frac{-2t \pm \sqrt{6(t^2 + 1)}}{t^2 + 3}$,

$$\begin{cases} y_1 + y_2 = \frac{-4t}{t^2 + 3}, \\ y_1 \cdot y_2 = \frac{-2}{t^2 + 3}. \end{cases}$$
 7 \cancel{f}

则 MN 中点坐标为($\frac{6}{t^2+3}$, $\frac{-2t}{t^2+3}$), OP 中点坐标为($\frac{x_0}{2}$, $\frac{y_0}{2}$),则

$$\begin{cases} \frac{x_0}{2} = \frac{6}{t^2 + 3}, \\ \frac{y_0}{2} = \frac{-2t}{t^2 + 3} \end{cases}$$

$$\begin{cases} x_0 = \frac{12}{t^2 + 3}, \\ y_0 = \frac{-4t}{t^2 + 3} \end{cases}$$
...... 9 \Re

代入椭圆方程
$$t^4 - 2t^2 - 15 = 0$$
,解得 $t^2 = 5$10分

此时
$$P(\frac{3}{2},\pm\frac{\sqrt{5}}{2})$$
,11 分

所以椭圆C上是存在点P,使得四边形OMPN为平行四边形.......12分